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SUMMARY

An approximate-state Riemann solver for the solution of hyperbolic systems of conservation laws with
source terms is proposed. The formulation is developed under the assumption that the solution is made
of rarefaction waves. The solution is determined using the Riemann invariants expressed as functions of
the components of the flux vector. This allows the flux vector to be computed directly at the interfaces
between the computational cells. The contribution of the source term is taken into account in the governing
equations for the Riemann invariants. An application to the water hammer equations and the shallow water
equations shows that an appropriate expression of the pressure force at the interface allows the balance
with the source terms to be preserved, thus ensuring consistency with the equations to be solved as well
as a correct computation of steady-state flow configurations. Owing to the particular structure of the
variable and flux vectors, the expressions of the fluxes are shown to coincide partly with those given
by the HLL/HLLC solver. Computational examples show that the approximate-state solver yields more
accurate solutions than the HLL solver in the presence of discontinuous solutions and arbitrary geometries.
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1. INTRODUCTION

Godunov-type schemes [1] aim to solve hyperbolic systems of conservation laws in the presence
of discontinuous solutions [2–4]. The evolution of the solution in a given cell is determined by
the exchanges (via fluxes) at the interfaces with the neighbouring cells. The fluxes are computed
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Sciences de l’Eau – MSE, 34095 Montpellier Cedex 5, France.

†E-mail: lhomme@msem.univ-montp2.fr
‡E-mail: guinot@msem.univ-montp2.fr

Contract/grant sponsor: French Ministry of Research; contract/grant number: 9884-2003

Copyright q 2006 John Wiley & Sons, Ltd.



1510 J. LHOMME AND V. GUINOT

by solving Riemann problems at the interfaces. Computing an exact solution to the Riemann
problem can be a very time-consuming task because an iterative procedure is needed. Therefore,
approximate Riemann solvers are often preferred because they provide satisfactory solutions while
using faster algorithms. Two broad families of solvers can be distinguished: (i) solvers where the
Riemann problem is simplified (e.g. by linearizing the equations), and (ii) solvers where simplified
relationships are used to solve the exact problem.

The first family of solver includes Roe’s solver [5], where the flux at the location of the initial
discontinuity is calculated via a wave decomposition under the assumption of a constant Jacobian
matrix. The Jacobian matrix is approximated in such a way that consistency and conservation
conditions are satisfied. An entropy fix is needed when a rarefaction wave extends over the
location of the initial discontinuity. Primitive variable Riemann solvers [2] use a linearization of
the hyperbolic system with a constant Jacobian matrix in combination with the Rankine–Hugoniot
conditions across each wave. This allows a simplified system of equations to be solved for the
unknown variables. The Riemann invariants can also be used along the characteristics to obtain the
simplified system. A hybrid approach, combining simplified Riemann solvers used in the regions
where the solution is smooth and more sophisticated solvers where the solution involves large
gradients, has also been proposed [6].

The second family includes the HLL [7] solver for 2× 2 systems of conservation laws, based
on the assumption of two discontinuities, the propagation speeds of which are estimated a priori
[8, 9]. Adding a third wave to the system leads to the HLLC solver [10] for an improved resolution
of contact discontinuities when 3× 3 systems are to be solved. Osher’s solver [11] uses vector
splitting in the integration of the flux vector in the phase space. The integration path is designed
as a broken line, the segments of which are collinear to one of the eigenvectors of the Jacobian
matrix. Linde [12] uses the HLLC framework with two intermediate states linked by a heuristic
equation, allowing an estimate of the interface flux to be calculated. In another category of solvers,
known as approximate-state solvers [13, 14] the same relationships are used indifferently for shock
and rarefaction waves, as shock and rarefaction relationships differ only by a third-order term with
respect to the conserved variable [15]. This is equivalent to assuming that all waves except contact
discontinuities are: (i) rarefaction waves (in which case the Riemann invariants are used across
the waves), or (ii) shock waves (in which case the Rankine–Hugoniot relationships are used). The
performance of the above-mentioned solvers is analysed on a number of test cases in [16].

The above-mentioned solvers were initially designed for hyperbolic systems of conservation
laws without source terms. Stability problems may arise when source terms are present in the
conservation laws to be solved. This is the case in particular for the shallow-water equations in
the presence of steep bottom slopes.

When the hyperbolic system to be solved includes source terms, the fractional step or time
splitting method can be used, resulting in a two step algorithm. This method is generally successful
except when the solution is close to a steady state [17].

The source term upwinding approach [18] consists in splitting the source term across the cell in-
terfaces into two parts, to be assigned to the cells located on either sides of the interface. The splitting
between the left- and right-hand source terms is determined from the wave celerities in the cells.

Well-Balanced schemes [19] incorporate the non-uniform topography into the Riemann problem
with a partial differential equation with respects to time, considering the bottom level as part of the
conserved variables vector. The new Riemann problem obtained was initially solved in an exact
way [19, 20]. Approximate Riemann solvers were later introduced [21] to reduce the computational
cost of the method.
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LeVeque [17] proposed that the variable vector should be split into two vectors with a discon-
tinuity at the centre of the cell. The updated variables are computed using the fluxes at the cell
interfaces, the fluxes at the centre of the cells, and the contribution from the source term. The
resulting scheme, called the quasi-steady wave-propagation algorithm, is efficient when the system
is close to steady state.

The present paper aims to propose an approximate-state solver for hyperbolic systems of conser-
vation laws with source terms. This solver uses the Riemann invariants via a two rarefaction wave
assumption. The Riemann invariants are expressed as functions of the components of the flux vector,
which allows the flux to be computed directly at the interfaces between the computational cells.

Section 2 is devoted to the presentation of governing equations and solution principle. Section 3
details its application to the water hammer equations. Section 4 focuses on the shallow water
equations. Section 5 presents computational examples where the proposed solver is compared to
the HLL/HLLC solver, to which it is very similar. Section 6 provides concluding remarks.

2. GOVERNING EQUATIONS AND SOLUTION PRINCIPLE

2.1. General framework

The proposed solver aims to solve m ×m hyperbolic systems of conservation laws that can be
written in vector form as

�U
�t

+ �F
�x

=S (1)

where U is the conserved variable, F is the flux, S is the source term, and t and x are the time-
and space-co-ordinates respectively. F is assumed to depend both on U and on the local value of
one or several parameters, while S is assumed to depend on U, the local value of and the gradient
in the parameter(s)

F= F(U, �)

S= S(U, �, ��/�x)
(2)

where � denotes the vector formed by the various parameters of the system of conservation laws.
For instance, the shallow water equations in one dimension of space can be written in the form
(1)–(2) by defining U, F and S as

U=
[
h

hu

]
, F=

[
hu

hu2 + gh2/2

]
, S=

[
0

gh�zb/�x

]
(3)

where g is the gravitational acceleration, h is the water depth, u is the flow velocity, and zb is the
bottom elevation. The parameter vector � is defined as

� =
[
g

zb

]
(4)

clearly, the flux F depends on � (via g) and the source term depends on � and ��/�x (via g and
�zb/�x).

In what follows, the system of conservation laws (1) is assumed to be hyperbolic, that is, the
Jacobian matrix of the flux F with respect to the conserved variable U has m real and distinct
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eigenvalues. Equation (1) is discretized in one dimension of space as (see Figure 1)

Un+1
i =Un

i + �t

�xi
(Fn+1/2

i−1/2 − Fn+1/2
i+1/2 ) + (Sn+1/2

i−1/2,i + Sn+1/2
i+1/2,i )�t (5)

where Un
i is the average value of U over the cell i at the time level n, Fn+1/2

i+1/2 is the average value
of F between the time levels n and n + 1 at the interface (i + 1/2) between the cells i and i + 1,
Sn+1/2
i+1/2,i is the contribution to the cell i of the source terms estimated from U and � between the

cells i and i + 1, �t is the computational time step and �xi is the size of the cell i . When the
fluxes are estimated using an explicit approach (i.e. using only the values of U at the time level n),
the so-called Courant–Friedrichs–Lewy (CFL) condition must be satisfied for stability, that is

maxp |�(p)|�t
�xi

�1 ∀i (6)

where �(p) is the pth eigenvalue of the Jacobian matrix �F/�U. Note that Equations (1) and (3) can
be generalized to several dimensions of space, but in any case the evolution of the flow variable in
a given cell is computed from a balance between the fluxes at the edges of the cell and the sum of
the contributions of the source terms. The flux and source terms are usually computed by solving
a one-dimensional equation of the type (1) in the local co-ordinate system formed by the normal
vector to the cell edge. Therefore, the key issue is the computation of the fluxes and source terms
in one dimension of space.

In Godunov-type schemes the flux Fn+1/2
i+1/2 is computed from the solution of a Riemann problem

at the interface i + 1/2 between the time levels n and n + 1. The Riemann problem is defined as
the following initial-value problem:

�U
�t

+ �F
�x

= S

U(x, tn) =
{
UL for x<xi+1/2

UR for x>xi+1/2

�(x) =
{

�L for x<xi+1/2

�R for x>xi+1/2

(7)

t

x i–1/2 

t
n

t
n+1

x

t

xi+1/2 

x i

n
iU

2/1
2/1

+n
iF 2/1

2/1
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+
n

iF

1+n
iU

Figure 1. Definition sketch for the finite volume formalism.
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where the constant values UL and UR are called the left and right states of the Riemann problem,
respectively.

The proposed solution method is derived from the following considerations:

1. Most existing Riemann solvers seek a solution to the conservation part of the equation
alone and do not take the source term into account. This has the particular consequence that
equilibrium conditions cannot always be preserved. Consider for example the solution of
the shallow water equations (see Section 4.1 for a detailed treatment) in the case of water
initially at rest over a non-horizontal bottom. Since the bottom level is not horizontal, the
water depth is not the same on either side of the interface. Solving the Riemann problem leads
to a non-zero unit discharge (that is the first component of the flux F) across the interface
and to a non-zero impulse (the second component of the flux vector F). The particular
consequence of this is that, the first component of the source term S being nil by definition,
the non-zero unit discharge in the first component of Equation (1) cannot be compensated by
a proper discretization of the source term (while this is possible for the second component
via, e.g. source term upwinding [18, 22]). Spurious oscillations arise in the computed profile
and propagate throughout the computational domain. This behaviour can be eliminated by
using the free surface elevation as a conserved variable instead of the water depth [23]. It
arises again when the source term includes the effects of channel width variations. This
bias is eliminated in the present approach by taking the source term into account in the
determination of the value of the flux at the interface.

2. The solver used is an approximate-state solver as defined in [2] in that the wave pattern
(i.e. the nature of the waves in the solution of the Riemann problem) is assumed a priori.
In most existing methods all waves are assumed to have the same nature, that is, all of
them are assumed to be rarefaction waves (or contact discontinuities) or all of them are
assumed to be shock waves. This assumption is justified in that the jump relationships
(that are valid across the shock waves) can be seen as approximations of the characteristic
relationships that are valid across rarefaction waves [13, 15]. Examples of Riemann solvers
using a two-shock assumption for the Euler equations of gas dynamics can be found in
[13, 24]. References [14, 25–27] present Riemann solvers based on the assumption of two
rarefaction waves for the solution of the Euler equations of gas dynamics, shock waves in
compressible liquids, the water hammer equations and a simplified system of equations that
describe two-phase flow in pipes. The assumption of a solution made only of rarefaction
waves is retained in the proposed approach because it makes the treatment of the source term
very simple.

3. The assumption of a solution made only of rarefaction waves allow relationships involving
the Riemann invariants to be written across the various waves. In contrast with the classical
approach where the Riemann invariants are used to compute the value of U, the relationships
are written in a modified form that allows the value of F to be determined directly at the
interface. Therefore the characteristic relationships are not written for U but for F. This is
attractive when the parameter function � is not constant. In this case, the estimation of F
from the value of U at the interface between the left and right states of the Riemann problem
requires that � be estimated at the interface. Simple equilibrium considerations using the
shallow water equations as an example show that the value of � at the interface would then
depend on the values of U on both sides. This problem does not arise when the flux F is
calculated directly.
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2.2. Flux and source term calculation

The developments presented in this subsection are derived from the second remark in the previous
paragraph, that is, the characteristic relationships most often provide reasonably accurate approxi-
mations of the jump relationships across shocks [15]. Therefore, the solution U (and subsequently
the flux F) is assumed to be continuous and differentiable in what follows. Left-hand multiplying
Equation (1) by the Jacobian matrix A= �F/�U leads to

A
�U
�t

+ A
�F
�x

=AS (8)

that can be rewritten as

�F
�t

+ A
�F
�x

=AS (9)

The matrix K of the eigenvectors of A is introduced. Left-hand multiplying Equation (9) by K−1

yields

K−1 �F
�t

+ K−1A
�F
�x

=K−1AS (10)

Equation (10) is rewritten so as to involve the vector K−1 dF and the diagonal form �=K−1AK
of the matrix A:

K−1 �F
�t

+ K−1AKK−1 �F
�x

=K−1AKK−1S (11)

Equation (11) can be rewritten as

�W
�t

+ �
�W
�x

= �S′ (12)

where the differential dW and the source term S′ are defined as

dW=K−1 dF

S′ =K−1S
(13)

and � is the diagonal matrix formed by the eigenvalues of A. Equation (12) is equivalent to the
following set of differential relationships:

dWk

dt
= �(k)S′

k along
dx

dt
= �(k), k = 1, . . . ,m (14)

where the index k indicates that the relationship is written for the kth component of the vector
equation (12). Note that Equation (13) can also be rewritten as

dWk =
m∑
j=1

K−1
k, j dFj (15)

where K−1
k, j is the element on the kth row and j th column of the matrix K−1 and Fj is the j th

component of the flux vector F. If the differential vector dW can be integrated, the components
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Wk are called the Riemann invariants of the system. Except for particular cases, dW cannot be
integrated to provide independent Riemann invariants for m �= 2 [28]. Therefore, the method is
presented for the general formulation (14).

The next step in the method consists in integrating Equation (14) along each characteristic
line dx/dt = �(k) between the point M(xi+1/2, tn+1/2) and the foot A(k) of the kth characteristic

leading to M (Figure 2). The value of the flux computed at M is used as an estimate for Fn+1/2
i+1/2

using a middle point rule ∫ M

A(k)
dWk = �t

2
�(k)S′

k (16)

where the overbar denotes the average value of the source term along the integration path.
Substituting Equation (15) into Equation (16) leads to∫ M

A(k)

m∑
j=1

K−1
k, j dFj = �t

2
�(k)S′

k (17)

The coefficients in the kth row of the matrix K−1 are approximated using the constant coefficients
on the side of the interface to which the kth characteristic is coming

K−1
k, j =

⎧⎨
⎩
K−1
k, j (UL, �L) if �(p)>0

K−1
k, j (UR, �R) if �(p)<0

(18)

This allows the coefficients K−1
k, j in Equation (17) to be taken out of the integral. Equation (17)

leads to the following set of scalar equations:

m∑
j=1

K−1
k, j (FM, j − Fk, j ) = �t

2
�(k)S′

k, k = 1, . . . ,m (19)

∆t

∆ t /2

)(
2/1

k
i+ξ

A
(k )

t
n

t
n+1

x

t

dx / dt = λ (k )

M

Figure 2. Definition sketch for the integration path along the characteristic line.
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where Fk, j and FM, j denote the j th component of F at the points A(k) and M , respectively. Fk, j
is given by the left state of the Riemann problem if �(k) is positive and by the right state if �(k) is
negative. Equation (19) is rewritten as

m∑
j=1

K−1
k, j FM, j =

m∑
j=1

K−1
k, j Fk, j + �t

2
�(k)S′

k, k = 1, . . . ,m (20)

with

Fk, j =
{
FL, j if �(k)>0

FR, j if �(k)<0
(21)

Solving the m ×m system of Equations (20) for the flux components FM, j provides the value of

F at (xi+1/2, tn+1/2). This value is used as an estimate for the average value Fn+1/2
i+1/2 over the time

step. To do so, the average source term S′
k must be estimated. The proposed estimate takes the

form

S′
k = S′

k(ULR, �LR, ��/�x) (22)

where ��/�x is given by the average slope over the domain of dependence of the solution

��

�x
≈ �R − �L

maxk �(k) − mink �(k)

2

�t
(23)

In the general case, many different estimates can be provided for ULR and �LR. Such estimates
however should satisfy the consistency condition:

ULR =ULR(UL,UR)

�LR = �LR(�L, �R)

ULR(U,U) =U

�LR(�,�) = �

(24)

and the equilibrium conditions should be preserved, that is, any combination of the left and right
states that satisfy steady-state conditions should yield a steady-state flux. These two conditions are
in general sufficient to yield a unique estimate for ULR and �LR.

The calculation of the contributions Sn+1/2
i−1/2,i and Sn+1/2

i+1/2,i of the source term in Equation (5) is
carried out using a classical source term upwinding technique [18] that yields the following vector
expression:

Sn+1/2
i−1/2,i = −mink �(k)

maxk �(k) − mink �(k)
Si−1/2(ULR, �LR, ��/�x)

Sn+1/2
i+1/2,i = maxk �(k)

maxk �(k) − mink �(k)
Si+1/2(ULR, �LR, ��/�x)

(25)
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3. APPLICATION TO THE WATER HAMMER EQUATIONS

The frictionless water hammer equations in a horizontal pipe can be written in the form (1) by
defining U, F and S as

U=
[

�A

�Q

]
, F=

[
�Q

Ap

]
, S=

[
0

p �A/�x

]
(26)

where A is the cross-sectional area of the pipe, p is the pressure, Q is the volume discharge and
� is the fluid density. The matrix A is given by

A=
[
0 1

c2 0

]
(27)

where the propagation speed c of the pressure waves is classically defined as

c=
[
d(Ap)

d(�A)

]1/2
(28)

Assuming that the pressure regime remains in the elastic domain for both the pipe material and
the fluid, c is a constant that depends only on the fluid compressibility and on the local geometry
and mechanical properties of the pipe. The Riemann problem is to be solved for a configuration
where c and A are variable in space

A =
{
AL for x<xi+1/2

AR for x>xi+1/2

c =
{
cL for x<xi+1/2

cR for x>xi+1/2

(29)

The matrices of eigenvalues and eigenvectors of A are given by

K=
[−c 0

0 c

]
, K=

[
1 1

−c c

]
(30)

This leads to the following expressions for the vectors dW and S′ in Equation (12)

dW= 1

2
d

⎡
⎢⎢⎣

�Q − Ap

c

�Q + Ap

c

⎤
⎥⎥⎦ , S′ = 1

2

⎡
⎢⎢⎣
p
�A
�x

p
�A
�x

⎤
⎥⎥⎦ (31)

Substituting Equation (31) into Equation (20) with estimates (22)–(23) and multiplying by 2 yields

cR�Q − Ap = cR(�Q)R − (Ap)R + cR
AR − AL

cL + cR
pLR

cL�Q + Ap = cL(�Q)L + (Ap)L + cL
AR − AL

cL + cR
pLR

(32)
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where pLR is determined as explained below. Solving Equation (32) for Ap and �Q leads to

�Q = (Ap)L − (Ap)R
cL + cR

+ cL(�Q)L + cR(�Q)R

cL + cR
+ AR − AL

cL + cR
pLR

Ap = cR(Ap)L + cL(Ap)R
cL + cR

+ cLcR
(�Q)L − (�Q)R

cL + cR

(33)

The expression for pLR is determined as follows. Consider the equilibrium state

(�Q)L = (�Q)R = (�Q)0

pL = pR = p0
(34)

with cL �= cR and/or AL �= AR. Assuming that �A/�x is estimated as in Equation (23), substituting
Equation (34) into Equation (33) yields the following expression for �Q:

�Q = (�Q)0 + AL − AR

cL + cR
p0 + AR − AL

cL + cR
pLR (35)

Any expression for pLR that satisfies the consistency condition (pLR = p0) leads to �Q = (�Q)0,
which is the desired result. Therefore the consistency condition is not sufficient to derive a
satisfactory estimate of pLR.

The most obvious estimate of pLR is obtained by assuming a linearly varying section and a
constant celerity on each side of the discontinuity. In this case the cross-sectional area at the
interface is given by

A= ALcR + ARcL
cL + cR

(36)

Substituting Equation (36) into the second equation (31) leads to

pLR = ALcR pL + ARcL pR
ALcR + ARcL

+ cLcR
ALcR + ARcL

[(�Q)L − (�Q)R] (37)

This expression for pLR can also be achieved by assuming that the cross-sectional area is piecewise
constant, with the discontinuity located at the interface. It is easily checked that writing Equations
(32) with �A/�x = 0 on each side of the discontinuity and stating that p is continuous across the
interface also leads to Equation (37). Equation (33) is to be compared to that given by the classical
HLL solver

�Q = cL(�Q)L + cR(�Q)R

cL + cR
+ cLcR

(�A)L − (�A)R

cL + cR

Ap = cL(Ap)L + cR(Ap)R
cL + cR

+ cLcR
(�Q)L − (�Q)R

cL + cR

(38)

When cL = cR and AL = AR, Equations (33) and (38) yield identical expressions for Ap and �Q
(note that d(Ap) = c2 d(�A)):

�Q = (Ap)L − (Ap)R
2c

+ (�Q)L + (�Q)R

2

Ap = (Ap)L + (Ap)R
2

+ c
(�Q)L − (�Q)R

2

(39)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1509–1540
DOI: 10.1002/fld



APPROXIMATE-STATE RIEMANN SOLVER 1519

When AL �= AR Equation (38) leads to a non-zero value for Q. This non-zero value cannot be
compensated by the source term, the first component of which is nil. Consequently, the solution
becomes oscillatory and may be unstable, as shown in Section 5.1.

4. APPLICATION TO THE SHALLOW WATER EQUATIONS

4.1. General formulation

The one-dimensional shallow water equations, i.e. the continuity and momentum equations with
an additional equation for transverse momentum conservation, can be written in the form (1) by
defining U, F and S as

U=
⎡
⎢⎣

h

hu

hv

⎤
⎥⎦ , F=

⎡
⎢⎣

hu

hu2 + gh2/2

huv

⎤
⎥⎦ , S=

⎡
⎢⎣

0

S0 − S f

0

⎤
⎥⎦ (40)

where h is the water depth, u and v are the x- and y-velocities, respectively, S0 and S f are the
source terms arising from the bottom slope and from friction in the x-directions, respectively. The
source terms S0 and S f are defined as

S0 = −gh
�zb
�x

S f = gh
(u2 + v2)1/2

K 2h4/3
u

(41)

The matrix A is given by

A=
⎡
⎢⎣

0 1 0

c2 − u2 2u 0

−uv v u

⎤
⎥⎦ (42)

where the propagation speed c of the pressure waves is given by

c=
[
d(gh2/2)

dh

]1/2
= (gh)1/2 (43)

The matrices of eigenvalues and eigenvectors of A are, respectively,

K=
⎡
⎢⎣

�(1) 0 0

0 �(2) 0

0 0 �(3)

⎤
⎥⎦ , K=

⎡
⎢⎣

1 0 1

�(1) 0 �(3)

v 1 v

⎤
⎥⎦ (44)

where

�(1) = u − c=min(uL − cL, uR − cR)

�(3) = u + c=max(uL + cL, uR + cR)

�(2) = u = �(1) + �(3)

2

(45)
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The inverse matrix of K is

K−1 = 1

2c

⎡
⎢⎢⎣

�(3) −1 0

−2cv 0 2c

−�(1) 1 0

⎤
⎥⎥⎦ (46)

Considering that friction is accounted via a time-splitting procedure, the friction term S f does not
appear in the computation of the fluxes in what follows. This leads to the following expressions
for the vectors dW and S′ used in Equation (12):

dW= 1

2c

⎡
⎢⎢⎣

�(3) dF1 − dF2

−2cv dF1 + 2c dF3

−�(1) dF1 + dF2

⎤
⎥⎥⎦ , S′ =

⎡
⎢⎣

−S0

0

S0

⎤
⎥⎦ (47)

Considering constant values for �(k) (k = 1, 2, 3) and substituting Equation (47) into Equation (19)
leads to

�(3)(F1 − F1R) − (F2 − F2R) = −�(1)S(1)
0

�t

2
,

dx

dt
= �(1)

−�(1)(F1 − F1L) + (F2 − F2L) = �(3)S(2)
0

�t

2
,

dx

dt
= �(3)

−v(F1 − F1,A) + (F3 − F3,A) = 0,
dx

dt
= �(2)

(48)

where

Fi,A =
{
Fi,L if �(2)>0,

Fi,R if �(2)<0,
i = 1, 2, 3 (49)

and the source term is obtained using Equation (23) for the estimate of �zb/�x :

S(i)
0 =−gh(i)

LR
zbR − zbL

�(3) − �(1)

2

�t
, i = 1, 2 (50)

where h(i)
LR is the estimated depth at the interface between cells L and R, and zbL and zbR are the

bottom elevations on the left- and right-hand sides of the interface respectively. System (48) can
be solved uniquely for F1∗ , F2∗ and F3∗ in the intermediate zone of constant state:

F1∗ =U2∗ = F2,L − F2,R − �(1)F1,L + �(3)F1,R

�(3) − �(1)
− gh(1)

LR
zbR − zbL

�(3) − �(1)

F2∗ = �(3)F2,L + �(1)F2,R − �(1)�(3)(F1,L − F1,R)

�(3) − �(1)
− gh(2)

LR
zbR − zbL

�(3) − �(1)
(�(3) + �(1))

F3∗ =
{

vLF1 if �(2)>0

vRF1 if �2)<0

(51)
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Note that the estimates h(1)
LR and h(2)

LR in the formulae of F1∗ and F2∗ are not necessarily identical.
Their derivation is the subject of next subsection.

4.2. Source term discretization in the continuity equation

The source term S(1)
0 must be estimated so as to preserve equilibrium conditions, i.e. assuming

a non-horizontal bottom and a static equilibrium condition, the discharge at the interface should
remain nil. Many estimates can be provided for h(1)

LR, the most obvious of which is

h(1)
LR = hL + hR

2
(52)

Another estimate can be proposed, where the depth on each side of the discontinuity is weighted
by the propagation speed of the wave that comes from this side:

h(1)
LR = �(3)hL − �(1)hR

�(3) − �(1)
(53)

where �(1) and �(3) are defined in Equation (45). Equation (53) is equivalent to Equation (52) in
the static equilibrium case,

h(1)
LR = chL − (−c)hR

c − (−c)
= hL + hR

2
(54)

where c= (�(3) − �(1))/2 from Equation (45), and a nil mass flux is obtained

F1 = 1

�(3) − �(1)

(
g
h2L
2

− g
h2R
2

)
− gh(1)

LR
hL − hR

�(3) − �(1)

= 1

�(3) − �(1)
g(hL − hR)

(
hL + hR

2
− h(1)

LR

)
= 0 (55)

Estimate (53) is retained in the computational examples shown in Section 5.

4.3. Source term discretization in the momentum equation

Two estimates of the source terms appear in the momentum equation: the estimate S(2)
0 in the

momentum flux F2 and the estimate S(3)
0 that comes directly from the source term. These two

estimates cannot be assumed identical a priori. The second component of the vector equation (3)
can be rewritten as

(uh)n+1
i −(uh)ni = �t

�xi
[(F2)n+1/2

i−1/2 −(F2)
n+1/2
i+1/2 ]+[(S(3)

0 )
n+1/2
i−1/2,i+(S(3)

0 )
n+1/2
i+1/2,i ]�t

= �t

�xi

⎡
⎣�(3)

i−1/2(F2)
n
i−1−�(1)

i−1/2(F2)
n
i −�(1)

i−1/2�
(3)
i−1/2[(F1)ni−1−(F1)ni ]

�(3)
i−1/2−�(1)

i−1/2
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− g(h(2)
LR)ni−1/2

(zb)ni −(zb)ni−1

�(3)
i−1/2−�(1)

i−1/2

(�(3)
i−1/2+�(1)

i−1/2)

⎤
⎦

− �t

�xi

⎡
⎣�(3)

i+1/2(F2)
n
i −�(1)

i+1/2(F2)
n
i+1−�(1)

i+1/2�
(3)
i+1/2[(F1)ni −(F1)ni+1]

�(3)
i+1/2−�(1)

i+1/2

− g(h(2)
LR)ni+1/2

(zb)ni+1−(zb)ni

�(3)
i+1/2−�(1)

i+1/2

(�(3)
i+1/2+�(1)

i+1/2)

⎤
⎦

+�t

⎡
⎣−g(h(3)

LR)ni−1/2

(zb)ni −(zb)ni−1

�(3)
i−1/2−�(1)

i−1/2

2

�t

− g(h(3)
LR)ni+1/2

(zb)ni+1−(zb)ni

�(3)
i+1/2−�(1)

i+1/2

2

�t

⎤
⎦ (56)

where �xi is the size of the cell i and �t is the computational time step. From a practical
point of view, the following combination of estimates was found to be efficient for shallow water
simulations:

(i) h(2)
LR is set to zero in the calculation of the second flux component F2,

(ii) the following estimate h(3)
LR is used in the calculation of the source term S(3)

0 :

h(3)
LR =

{
hL − �zb/2 if �zb>0
hR + �zb/2 if �zb<0

(57)

where �zb = zbR − zbL. This third estimate h(3)
LR is determined using the assumption that the

variation in the bottom level takes the form of a step (Figure 3). Then the reaction exerted
by the step onto the control volume formed by two cells is given by

gh(3)
LR�zb =

⎧⎪⎪⎨
⎪⎪⎩

−
∫ zbR

zbL
g(zL − z) dz if �zb>0∫ zbL

zbR
g(zR − z) dz if �zb<0

(58)

In the case of equilibrium state, this leads to

h(3)
LR =

⎧⎪⎨
⎪⎩
hL − hL − hR

2
if �zb>0

hR + hL − hR
2

if �zb<0

= hL + hR
2

(59)

because the water levels zL and zR are equal on both sides of the interface. The main reason why a
nil estimate is used for h(2)

LR in the expression of the flux component F2 is that the static equilibrium
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Figure 3. Analogy between forces exerted by the bottom slope and by a step.

Figure 4. Definition sketch for the one-dimensional sequence of three cells with increasing bottom level.

condition is satisfied for any expression the estimate h(2)
LR, provided that the estimate h(3)

LR in Equation

(56) is equal to the estimate h(1)
LR in Equation (52). Moreover, numerical experiments have shown

that using a non-zero estimate for h(2)
LR often leads to less accurate numerical solutions.

Consider a one-dimensional sequence of three cells with an increasing bottom level (Figure 4)
under static equilibrium. The celerities used for the interface calculations are:

�(3)
i−1/2 =max(ci , ci−1) = ci−1

�(1)
i−1/2 =min(−ci , −ci−1) = −ci−1

�(3)
i+1/2 =max(ci , ci+1) = ci

�(1)
i+1/2 =min(−ci , −ci+1) = −ci

(60)
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The momentum flux at the interface i − 1/2 reduces to

(F2)
n+1/2
i−1/2 = 1

2

(
g
hn

2

i−1

2
+ g

hn
2

i

2

)
(61)

The momentum flux at the interface i + 1/2 reduces to

(F2)
n+1/2
i+1/2 = 1

2

(
g
hn

2

i

2
+ g

hn
2

i+1

2

)
(62)

The source terms can be rewritten as

(S(3)
0 )

n+1/2
i−1/2,i = ci−1

2ci−1

1

�xi
{−g(h(3)

LR)
n+1/2
i−1/2 [(zb)ni − (zb)

n
i−1]}

(S(3)
0 )

n+1/2
i+1/2,i = ci

2ci

1

�xi
{−g(h(3)

LR)
n+1/2
i+1/2 [(zb)ni+1 − (zb)

n
i ]}

(63)

The momentum equation (56) can now be rewritten, replacing the bottom levels with the depths
and using Equation (59)

(uh)n+1
i − (uh)ni = �t

�xi

1

2
g

[
1

2
(hn

2

i−1 − hn
2

i+1) − hni−1 + hni
2

(hni−1 − hni )

− hni + hni+1

2
(hni − hni+1)

]
(64)

and therefore

(uh)n+1
i − (uh)ni = �t

�xi

1

2
g

[
1

2
(hn

2

i−1 − hn
2

i+1) − hn
2

i−1 − hn
2

i

2
− hn

2

i − hn
2

i+1

2

]
= 0 (65)

In the static equilibrium case, the unit discharge uh remains constant in cell i , regardless of the
expression of h(2)

LR in Equation (56).

4.4. Practical implementation

Note that the values of F determined in Sections 4.2 and 4.3 are only the values in the ‘star region’,
that is, in the intermediate region of constant state. The value of interest, however, is the value
of F at the location of the initial discontinuity. In practice, five different cases can be defined
from the respective locations of the intermediate zone and the interface. These cases correspond
to subcritical, critical and supercritical flow conditions (Figure 5). The variables u∗ and c∗ of the
intermediate zone are computed using the classical Riemann invariants along the characteristics:

u∗ + 2c∗ = uL + 2cL

u∗ − 2c∗ = uR − 2cR
(66)

and consequently

u∗ = uL + uR
2

+ cL − cR

c∗ = uL − uR
4

+ cL + cR
2

(67)
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Figure 5. Relative position of the interface to the intermediate zone: top left, subcritical case, top right and
bottom left, supercritical case, bottom right, critical case.

The celerities �(1)∗ and �(3)∗ of the intermediate zone are computed using u∗ and c∗:

�(3)∗ = u∗ + c∗

�(1)∗ = u∗ − c∗ (68)

and then compared with �(1)
L and �(3)

R , allowing the region where the interface is located (side L,
side R or the intermediate zone *) to be identified:{

F1 = F1L

F2 = F2L
if �(1)

L >0

⎧⎨
⎩
F1 = (uL + 2cL)3/(27g)

F2 = (uL + 2cL)4/(54g)
if �(1)

L <0 and �(1)∗ >0

{
F1 = F1∗

F2 = F2∗
if �(1)∗ <0 and �(3)∗ >0

⎧⎨
⎩
F1 = (uR − 2cR)3/(27g)

F2 = (uR − 2cR)4/(54g)
if �(3)∗ <0 and �(3)

R >0

{
F1 = F1R

F2 = F2R
if �(3)

R <0

(69)

In the critical case, the fluxes are computed using the first relation (66) and the condition u = c
when the flow is directed from left to right, and the second relation (66) combined to the condition
u =−c when the flow is directed from right to left.
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4.5. Comparison with the HLL solver

Expressions (51) can be compared with those given by the HLL method, recalled here

F= 1

�+ − �− [�+FL − �−FR − �+�−(UL − UR)]

U= 1

�+ − �− (FL − FR − �−UL + �+UR)

(70)

where �+ and �− are usually estimated as in [8]
�+ =max(�+

L , �+
R , 0)

�− =min(�−
L , �−

R , 0)
(71)

Except for the source terms, the first two equations (51) are similar to Equations (70). The first
equation (51) is equivalent to the second component of the second equation (70). However, the
second equation (70) is not used in the HLL/HLLC approach because the first equation suffices
to estimate both components of the flux. The proposed approximate-state solver can be seen as a
variation from the HLL/HLLC formalism, where the mass flux is derived from the equation in U
(that is, the conserved variable) and the momentum flux is derived from the equation in F (that is,
the flux). This apparently minor difference in the expression of the mass flux yields a substantial
difference in the behaviour of the analytical solution. Unlike Equation (51), Equation (70) leads
to a non-zero value for F1 in the static equilibrium case because of the absence of source terms

F1 =U2 = 1

�+ − �− (gh2L/2 − gh2R/2) (72)

A numerical trick [23] is required to avoid in this case non-zero discharge at the interface with
the HLL method. U is redefined as

U=
⎡
⎢⎣

z

hu

hv

⎤
⎥⎦ (73)

With this new definition of the conserved variable, z is identical on both sides of the interface
under static equilibrium conditions and a zero mass flux is obtained.

Note that the two formulations partly coincide only because the first component of the mass flux
(that is, the unit discharge) coincides with the second component of the conserved variable (that is,
the unit momentum). Due to the close similarity of the proposed formulation with the HLL formula-
tion, the proposed solver is compared to the HLL solver in the computational examples of Section 5.

5. COMPUTATIONAL EXAMPLES

5.1. Water hammer simulations

The following two examples illustrate the performance of the Riemann solver defined by Equations
(30) and (34). The propagation of a pressure wave into a pipe with a piecewise constant cross-
sectional area is simulated. The variation in the cross-section yields a non-zero source term p �A/�x
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in the momentum equation. As shown at the end of Section 3, using a classical solver such as
the HLL solver under such a configuration usually triggers spurious oscillations and sometimes
numerical instability, even when static configurations are considered. Indeed, when the cross-
section is variable Equation (39) yields a non-zero discharge even when the initial discharge is
equal to zero and the pressures pL and pR are identical. However, the proposed solver, that has
the same order of accuracy as the HLL solver (see Appendix A for the details of the consistency
analysis), does not exhibit such a behaviour, as shown by the following two simulations.

The water is initially at rest in the pipe at an initial pressure p0. A pressure wave is initi-
ated by rising suddenly the pressure to a constant value pb at the left-hand extremity of the
pipe. At the section discontinuity, the pressure of the impinging wave is modified. Therefore
part of the pressure and discharge signal is reflected while part of it propagates into the right-
hand part of the pipe. A narrowing section (Table I, Figure 6) causes the pressure to rise, while an

Table I. Water hammer simulation.

Symbol Meaning Value

A1 Pipe cross-sectional area on the left-hand side of the discontinuity 0.1 m2

A2 Pipe cross-sectional area on the right-hand side of the discontinuity 1 m2

c1 Sound celerity on the left-hand side of the discontinuity 3000 m/s
c2 Sound celerity on the right-hand side of the discontinuity 2000 m/s
L1 Length of the pipe on the left-hand side of the discontinuity 750 m
L2 Length of the pipe on the right-hand side of the discontinuity 500 m
p0 Initial pressure 105 Pa
pb Pressure at the left-hand boundary 2× 105 Pa
Q0 Initial discharge 0 m3/s
�t Computational time step 5× 10−2 s
�x1 Cell width on the left-hand side of the discontinuity 75 m
�x2 Cell width on the right-hand side of the discontinuity 50 m
� Water density under the initial pressure 103 kg/m3

Parameters for the first test case.

1.E+05

2.E+05

2500 25000
x (m) x (m)

p 
(P

a)

Analytical

Numerical

0.E+00

1.E-02

0

Q
(m

3 /
s)

Analytical
Numerical

Figure 6. Water hammer simulations. Pressure (left) and discharge (right) profiles
at t = 1.5 s for the first test case.
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Table II. Water hammer simulation.

Symbol Meaning Value

A1 Pipe cross-sectional area on the left-hand side of the discontinuity 1 m2

A2 Pipe cross-sectional area on the right-hand side of the discontinuity 0.1 m2

c1 Sound celerity on the left-hand side of the discontinuity 2000 m/s
c2 Sound celerity on the right-hand side of the discontinuity 3000 m/s
L1 Length of the pipe on the left-hand side of the discontinuity 500 m
L2 Length of the pipe on the right-hand side of the discontinuity 750 m
p0 Initial pressure 105 Pa
pb Pressure at the left-hand boundary 2× 105 Pa
Q0 Initial discharge 0 m3/s
�t Computational time step 5× 10−2 s
�x1 Cell width on the left-hand side of the discontinuity 50 m
�x2 Cell width on the right-hand side of the discontinuity 75 m
� Water density under the initial pressure 103 kg/m3

Parameters for the second test case.

1.E+05

2.E+05

3.E+05

00520
x (m)

p 
(P

a)

Analytical

Numerical

0.E+00

1.E-01

25000
x (m)

Q
(m

3 /
s)

Analytical

Numerical

Figure 7. Water hammer simulations. Pressure (left) and discharge (right) profiles
at t = 1.5 s for the second test case.

expanding section leads to a lower pressure (Table II, Figure 7). Figures 6 and 7 show that the
numerical solutions match the analytical solutions in both cases. Simulations using the HLL solver
have been shown to yield unstable solutions because of the impossibility for the HLL solver to
maintain equilibrium conditions when the cross-sectional area is not constant. Due to this instability,
the numerical solutions obtained using the HLL solver are not displayed in Figures 6 and 7.

5.2. Shallow water simulation: hydraulic jump with a slope discontinuity

In this test a hydraulic jump is simulated in a channel with a slope discontinuity (Table III).
The purpose of this test is to assess the ability of the proposed solver to handle transcritical,
steady-state conditions. The bottom slope is piecewise constant, with a steep central region and
mild slopes in the upstream and downstream parts (Figure 8, top). A transition from subcritical to
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Table III. Shallow water simulation.

Symbol Meaning Value

g Gravitational acceleration 9.81 m/s2

h Prescribed depth at the downstream boundary 1 m
K Strickler friction coefficient 60 m1/3/s
q Prescribed unit discharge at the upstream boundary 1 m2/s
S1 Bottom slope on the left-hand side of the slope discontinuity 5× 10−2 m/m
S2 Bottom slope on the right-hand side of the slope discontinuity 3× 10−3 m/m
�t Computational time step 5× 10−2 s
�x Cell width 1 m

Parameters for the first test case (hydraulic jump).

supercritical conditions occurs in the form of a critical point at the transition from the mild to the
steep slope. Conversely, a hydraulic jump is located next to the transition from the supercritical
to the subcritical flow regime. The water profiles computed with the HLL Riemann solver and
the proposed solver defined, respectively, by Equations (70) and (51) are shown in Figure 8. It
can be seen that the jump is steeper with the proposed solver, the transition between subcritical
and supercritical flows taking place within only two cells, while it occurs within four cells with
the HLL solver. Note that this difference in the behaviours of the solvers could not be expected
from the consistency analysis carried out in Appendix A. The consistency analysis is based on the
assumption of a continuous, differentiable and smoothly varying solution from one computational
cell to the next, which is not the case when a hydraulic jump occurs. The difference between the
two solutions is only due to the presence of the source term in the continuity equation.

5.3. Shallow water simulation: frictionless dambreak

The purpose of the second shallow water simulation is to assess the ability of the solver to handle
the propagation of moving shocks and the stability of critical points under unsteady conditions.
A frictionless dam-break is simulated over a wetted horizontal bottom for which an analytical
solution exists [29]. The parameters of the test case are given in Table IV. The water profiles
computed with the HLL Riemann solver and the proposed solver at time t = 10 s are shown in
Figure 9. The results given by the two solvers are very close to each other, however the location
of the shock wave computed using the proposed solver is closer to the analytical solution than that
given by the HLL solver.

The third example is the frictionless simulation of a dam-break on a dry horizontal bottom
(Table V). The water profiles computed with the HLL solver and the proposed solver are shown at
time t = 10 s in Figure 10. Once again the results given by the two solvers are very close to each
other, but the front wave position computed using the proposed solver is closer to the analytical
solution [29] than that computed using the HLL solver.

5.4. Shallow water simulation: steady flow over a bump

The fourth example is the frictionless simulation of a steady flow over a bump (Tables VI and
VII). This test aims to illustrate the performance of the proposed solver in the presence of a
spatially varying parameter in the source term (here the bottom slope �zb/�x). This bump has a
parabolic shape defined by its height and length. The simulation is carried out from static initial
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Figure 8. Shallow water simulations. Computed water level and depth for the first test case,
top, plan view of the simulated flow, middle, detailed view of the hydraulic drop, bottom,

detailed view of the hydraulic jump.
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Table IV. Shallow water simulation.

Symbol Meaning Value

g Gravitational acceleration 9.81 m/s2

h0 Initial depth of water in the dam 30 m
�t Computational time step 5× 10−2 s
�x Cell width 10−1 m

Parameters for the second test case (dam-break on a wetted horizontal bottom).
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Figure 9. Shallow water simulations. Computed water levels for the second test case (frictionless simu-
lation of a dam-break on a wetted horizontal bottom); top, plan view of the simulated dam-break flow,

bottom, detailed view of the front wave.

conditions where the initial water level is arbitrary and prescribing constant boundary conditions.
The simulation is carried out until steady flow conditions are reached over the computational
domain. In a first simulation, the boundary conditions are defined such that the flow is subcritical
over the entire domain. In a second simulation, the flow is subcritical upstream of the bump and
supercritical downstream of it.
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Table V. Shallow water simulation.

Symbol Meaning Value

g Gravitational acceleration 9.81 m/s2

hL Initial depth of water in the left side of the dam 30 m
hR Initial depth of water in the right side of the dam 1 m
�t Computational time step 5× 10−2 s
�x Cell width 10−1 m

Parameters for the third test case (dam-break on a dry horizontal bottom).
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Figure 10. Shallow water simulations. Computed water levels for the third test case (frictionless sim-
ulation of a dam-break on a dry horizontal bottom); top, plan view of the simulated dam-break flow,

bottom, detailed view of the front wave.

The water profiles computed with the HLL solver and the proposed solver for a subcritical
flow are shown in Figure 11 and those computed for a transcritical flow are shown in Figure
12. The analytical solution is obtained by solving Bernoulli’s classical steady-state equations
numerically. In both cases, the water level is correctly computed by the two solvers, but the proposed
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Table VI. Shallow water simulation.

Symbol Meaning Value

g Gravitational acceleration 9.81 m/s2

hb Bump height 0.2 m
lb Bump length 4 m
q Prescribed unit discharge at the upstream boundary 4.42 m2/s
z0 Initial water level 2 m
zd Prescribed level at the downstream boundary 2 m
�t Computational time step 5× 10−2 s
�x Cell width 1 m

Parameters for the fourth test case (steady subcritical flow over a bump).

Table VII. Shallow water simulation.

Symbol Meaning Value

g Gravitational acceleration 9.81 m/s2

hb Bump height 0.2 m
lb Bump length 4 m
q Prescribed unit discharge at the upstream boundary 1.53 m2/s
z0 Initial water level 0.66 m
zd Prescribed level at the downstream boundary No condition
�t Computational time step 5× 10−2 s
�x Cell width 1 m

Parameters for the fourth test case (steady transcritical flow over a bump).

solver computes a constant discharge over the bump, while the HLL solver predicts a discharge
variation.

The reason for the difference in the unit discharge profiles obtained using the HLL solver and the
proposed solver was investigated as follows. The non-constant unit discharge produced by the HLL
solver may be due to several reasons, including (i) the impossibility for the HLL solver to recover
satisfactorily from the transient that stems from the arbitrary initial state, or (ii) the impossibility
for the HLL solver to compute correct steady-state conditions, even when a correct initial state
is prescribed. Figure 13 shows the results of the following two numerical experiments. In the
first experiment, the depth and velocity profiles computed by the HLL solver are used as initial
conditions for a simulation using the proposed solver (Figure 13(a)). In the second experiment,
the depth and velocity profiles computed by the proposed solver are used as initial conditions
for a simulation using the HLL solver (Figure 13(b)). As shown in Figure 13(a), the proposed
approximate state solver allows a correct unit discharge profile to be recovered from the inaccurate
initial conditions given by the HLL solver. In contrast, the HLL solver quickly drifts from the
correct initial state obtained from the approximate state solver, as shown in Figure 13(b). In both
cases, the profile reaches its final shape approximately 10 s after the beginning of the simulation.

It is stressed that the non-uniform unit discharge profile in the HLL simulation does not indicate a
loss of continuity. The finite volume formulation used in the present examples makes such a loss im-
possible by construction. When steady-state conditions are reached, the mass fluxes are necessarily
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Figure 11. Shallow water simulations. Frictionless steady-state flow over a bump under subcritical condi-
tions. Comparison of the water level (top) and discharge (bottom) computed by the HLL solver and the

proposed solver with the analytical solution.

identical all throughout the domain. It should be kept in mind that the unit discharge profiles
displayed in Figures 11–13 are not the mass fluxes at the interfaces between the computational
cells but the average values of the unit discharge over the computational cells, that is, the conserved
variable in the momentum equation. The non-constant unit discharge profile therefore indicates an
improper estimate of some terms in the momentum balance rather than in the mass balance.

6. CONCLUSIONS

An approximate solver for hyperbolic systems of conservation laws with source terms is proposed.
A two rarefaction wave assumption allows the Riemann invariants to be used across the waves.
Introducing the flux components into the derivation of the Riemann invariants allows the fluxes to
be directly calculated at the interface and the influence of the source term to be taken into account.

The proposed expressions for the fluxes partly coincide with those of the classical HLL/HLLC
solver. This can be explained by (i) the equality between the first component of the flux and the
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Figure 12. Shallow water simulations. Frictionless steady-state flow over a bump under supercritical
conditions. Comparison of the water level (top) and discharge (bottom) computed by the HLL solver and

the proposed solver with the analytical solution.

second component of the conserved variable, and (ii) the equality between the second row of the
matrix K−1 of eigenvectors and the eigenvalues of the Jacobian matrix A. A consistency analysis
shows that both solvers introduce the same amount of numerical diffusion in the absence of source
terms when the solution is class C2 in the limit of small cell sizes.

Applications to the water hammer equations and the shallow water equations are presented. The
solver requires the estimate of the pressure terms at the cell interfaces (via the pressure for the
water hammer equations, via the depth for the shallow water equations). The minor differences
with the HLL/HLLC solver suffice to introduce significant improvements in the presence of flow
discontinuities and/or irregular geometries.

In presence of a sudden variation in the pipe cross-section, the pressure and discharge profiles
are very close to the analytical ones. A comparison with the HLL solver shows an improvement of
variables computation. Dam-break flows are equivalently simulated by the proposed solver and the
HLL solver. A clear improvement on simulations of hydraulic jump and steady flow over a bump
is noticed. Although the implicit assumption of a continuous and differentiable variable is used in
the derivation of the fluxes, this assumption is shown to provide reliable estimates of the fluxes
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Figure 13. Shallow water simulations: (a) computed discharge for the fourth test case with the proposed
solver computed from the HLL steady state; and (b) computed discharge with the HLL solver computed

from the proposed solver steady state.

in situations where the flow is discontinuous and the characteristic formulation of the governing
equations should not be expected to hold a priori.

APPENDIX A: CONSISTENCY ANALYSIS OF THE APPROXIMATE STATE
AND HLL RIEMANN SOLVERS

The present appendix is devoted to a consistency analysis of the proposed solver and the HLL
solver as applied to the shallow water equations. Applying Equations (51) for a horizontal bottom
yields the following expressions for F1∗ and F2∗ :

F1∗ = F2,L − F2,R − �(1)F1,L + �(3)F1,R

�(3) − �(1)

F2∗ = �(3)F2,L − �(1)F2,R − �(1)�(3)(F1,L − F1,R)

�(3) − �(1)

(A1)
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where the components F1 and F2 of the flux vector are defined from Equation (40)

F1 = q

F2 = q2

h
+ g

h2

2

(A2)

The HLL solver (see Equations (70)) yields:

F1∗ = �(3)F1,L − �(1)F1,R − �(1)�(3)(U1,L −U1,R)

�(3) − �(1)

F2∗ = �(3)F2,L − �(1)F2,R − �(1)�(3)(U2,L −U2,R)

�(3) − �(1)

(A3)

where �(1) and �(3) are estimated as in Equation (71)

�(1) =min(uL − cL, uR − cR, 0)

�(3) =max(uL + cL, uR + cR, 0)

The consistency analysis is carried out at the interface i + 1/2 between the cells i and i + 1. The
cell width �x is assumed to be constant. For the sake of simplicity the proposed solver and the
HLL solver are assumed to be used in the framework of the first-order Godunov scheme, where
the left and right states of the Riemann problem are assumed to be equal to the average values of
the flow variables over the cells i and i + 1, respectively. Using the location of the interface as the
origin for the x-coordinate, a second-order Taylor series expansion in U and F yields

Uk(x) =Uk + x
�Uk

�x
+ x2

2

�2Uk

�x2
+ HOT(x)

Fk(x) = Fk + x
�Fk
�x

+ x2

2

�2Fk
�x2

+ HOT(x)

k = 1, 2 (A4)

where U and F are the point values of U (x) and F(x) at the interface, and the function HOT(x)
are polynomials of degree at least three in x . The left and right states of the Riemann problem to
be used in Equations (A1) and (A3) are obtained by averaging the expressions (A4) over the cells
i and i + 1, respectively. The origin of the x-axis being located at the interface i + 1/2, the cell i
extends from x = –�x to 0, while the cell i + 1 is located between x = 0 and +�x .

Uk,L = 1

�x

∫ 0

−�x
Uk(x) dx

Uk,R = 1

�x

∫ �x

0
Uk(x) dx

Fk,L = 1

�x

∫ 0

−�x
Fk(x) dx

Fk,R = 1

�x

∫ �x

0
Fk(x) dx

(A5)
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In the limit of a vanishing cell size, �(1) and �(3) tend to the following values:

�(1) ≈ u − c

�(3) ≈ u + c
(A6)

Substituting Equations (A4) into Equations (A5) yields

Uk,L =Uk − �x

2

�Uk

�x
+ �x2

6

�2Uk

�x2
+ HOT(�x)

Uk,R =Uk + �x

2

�Uk

�x
+ �x2

6

�2Uk

�x2
+ HOT(�x)

Fk,L = Fk − �x

2

�Fk
�x

+ �x2

6

�2Fk
�x2

+ HOT(�x)

Fk,R = Fk + �x

2

�Fk
�x

+ �x2

6

�2Fk
�x2

+ HOT(�x)

k = 1, 2 (A7)

Substituting Equations (A7) into (A1) yields the following expression for the fluxes in the proposed
approximate-state solver:

F1∗ = F1 − �x

2c

(
−u

�F1
�x

+ �F2
�x

)
+ �x2

6

�2F1
�x2

+ HOT(�x)

F2∗ = F2 − �x

2c

[
(c2 − u2)

�F1
�x

+ u
�F2
�x

]
+ �x2

6

�2F2
�x2

+ HOT(�x)

(A8)

For the purpose of comparison with the HLL solver, expressions (A8) are rewritten as follows.
The derivative �F2/�x is expressed as a function of �F1/�x and �U1/�x from relationships (A2)

�F2
�x

= (c2 − u2)
�U1

�x
+ 2u

�F1
�x

(A9)

Note that the equality U2 = F1 is used to introduce �F1/�x in Equation (A9). Substituting
Equation (A9) into (A8) leads to the following expressions:

F1∗ = F1 − �x

2c

[
(c2 − u2)

�U1

�x
+ u

�F1
�x

]
+ �x2

6

�2F1
�x2

+ HOT(�x)

F2∗ = F2 − �x

2c

[
(c2 − u2)

�U2

�x
+ u

�F2
�x

]
+ �x2

6

�2F2
�x2

+ HOT(�x)

(A10)

This expression is to be compared to the expression for the HLL solver that is obtained by
introducing Equations (A7) into (A3)

F1∗ = F1 − �x

2c

[
(c2 − u2)

�U1

�x
+ u

�F1
�x

]
+ �x2

6

�2F1
�x2

+ HOT(�x)

F2∗ = F2 − �x

2c

[
(c2 − u2)

�U2

�x
+ u

�F2
�x

]
+ �x2

6

�2F2
�x2

+ HOT(�x)

(A11)

Expressions (A10) and (A11) can be seen to be identical.
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The present consistency analysis leads to the following conclusions: (i) both the proposed and
HLL solver yield a consistent estimate of the fluxes at the interfaces between the computational
cells because F1∗ and F2∗ tend to the exact values F1 and F2, respectively, as the cell size �x
tends to 0, (ii) both solvers have the same truncation error up to the second order in �x , and (iii)
both solvers introduce the same amount of numerical diffusion in the computation of the fluxes.
Note that the diffusive flux, denoted by FD , is expressed in vector form as

FD =−�x

2

c2 − u2

c

�U
�x

= �x

2c
�(1)�(3) �U

�x
(A12)

This formulation expresses the well-known property of the HLL solver that overestimating the
magnitude of the wave celerities �(1) and/or �(3) leads to an increased stability of the numerical
solution because the amount of numerical diffusion is increased. This property also applies to the
proposed approximate-state solver, the degree of consistency of which is identical to that of the
HLL solver up to the second order.

The difference between the behaviours of the approximate-state and the HLL solvers in Figure 8
can therefore not be attributed to a difference in the amount of numerical diffusion introduced by
these solvers. Comparing Equations (A1) and (A3) shows that the approximate-state solver and
the HLL solver use the same expression for the momentum flux F2. The only difference between
these two formulations lies in the expression of the mass fluxes F1.
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